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CHAPTER

1Sparse Representations

Signals carry overwhelming amounts of data in which relevant information is often
more difficult to find than a needle in a haystack. Processing is faster and simpler
in a sparse representation where few coefficients reveal the information we are
looking for. Such representations can be constructed by decomposing signals over
elementary waveforms chosen in a family called a dictionary. But the search for
the Holy Grail of an ideal sparse transform adapted to all signals is a hopeless quest.
The discovery of wavelet orthogonal bases and local time-frequency dictionaries has
opened the door to a huge jungle of new transforms. Adapting sparse representa-
tions to signal properties, and deriving efficient processing operators, is therefore a
necessary survival strategy.

An orthogonal basis is a dictionary of minimum size that can yield a sparse repre-
sentation if designed to concentrate the signal energy over a set of few vectors.This
set gives a geometric signal description. Efficient signal compression and noise-
reduction algorithms are then implemented with diagonal operators computed
with fast algorithms. But this is not always optimal.

In natural languages, a richer dictionary helps to build shorter and more precise
sentences. Similarly, dictionaries of vectors that are larger than bases are needed
to build sparse representations of complex signals. But choosing is difficult and
requires more complex algorithms. Sparse representations in redundant dictionaries
can improve pattern recognition,compression,and noise reduction,but also the res-
olution of new inverse problems. This includes superresolution, source separation,
and compressive sensing.

This first chapter is a sparse book representation, providing the story line and
the main ideas. It gives a sense of orientation for choosing a path to travel.

1.1 COMPUTATIONAL HARMONIC ANALYSIS
Fourier and wavelet bases are the journey’s starting point. They decompose sig-
nals over oscillatory waveforms that reveal many signal properties and provide
a path to sparse representations. Discretized signals often have a very large
size N �106, and thus can only be processed by fast algorithms, typically imple-
mented with O(N log N ) operations and memories. Fourier and wavelet transforms 1
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illustrate the strong connection between well-structured mathematical tools and
fast algorithms.

1.1.1 The Fourier Kingdom
The Fourier transform is everywhere in physics and mathematics because it diago-
nalizes time-invariant convolution operators. It rules over linear time-invariant signal
processing, the building blocks of which are frequency filtering operators.

Fourier analysis represents any finite energy function f (t) as a sum of sinusoidal
waves ei�t :

f (t)�
1

2�

∫ ��

��
f̂ (�) ei�t d�. (1.1)

The amplitude f̂ (�) of each sinusoidal wave ei�t is equal to its correlation with f ,
also called Fourier transform:

f̂ (�)�

∫ ��

��
f (t) e�i�t dt. (1.2)

The more regular f (t), the faster the decay of the sinusoidal wave amplitude | f̂ (�)|
when frequency � increases.

When f (t) is defined only on an interval, say [0, 1], then the Fourier transform
becomes a decomposition in a Fourier orthonormal basis {ei2�mt}m∈Z of L2[0, 1].
If f (t) is uniformly regular, then its Fourier transform coefficients also have a fast
decay when the frequency 2�m increases, so it can be easily approximated with
few low-frequency Fourier coefficients. The Fourier transform therefore defines a
sparse representation of uniformly regular functions.

Over discrete signals, the Fourier transform is a decomposition in a discrete
orthogonal Fourier basis {ei2�kn/N }0�k�N of C

N , which has properties similar to a
Fourier transform on functions. Its embedded structure leads to fast Fourier trans-
form (FFT) algorithms,which compute discrete Fourier coefficients with O(N log N )

instead of N2.This FFT algorithm is a cornerstone of discrete signal processing.
As long as we are satisfied with linear time-invariant operators or uniformly

regular signals, the Fourier transform provides simple answers to most questions.
Its richness makes it suitable for a wide range of applications such as signal
transmissions or stationary signal processing. However, to represent a transient
phenomenon—a word pronounced at a particular time, an apple located in the
left corner of an image—the Fourier transform becomes a cumbersome tool that
requires many coefficients to represent a localized event. Indeed, the support of
ei�t covers the whole real line, so f̂ (�) depends on the values f (t) for all times
t ∈R. This global “mix”of information makes it difficult to analyze or represent any
local property of f (t) from f̂ (�).

1.1.2 Wavelet Bases
Wavelet bases, like Fourier bases, reveal the signal regularity through the ampli-
tude of coefficients, and their structure leads to a fast computational algorithm.

Copyright © 2009 by Elsevier Inc. All rights reserved.
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However, wavelets are well localized and few coefficients are needed to represent
local transient structures. As opposed to a Fourier basis, a wavelet basis defines a
sparse representation of piecewise regular signals,which may include transients and
singularities. In images, large wavelet coefficients are located in the neighborhood
of edges and irregular textures.

The story began in 1910, when Haar [291] constructed a piecewise constant
function

�(t)�

⎧⎨
⎩

1 if 0� t �1/2
�1 if 1/2� t �1

0 otherwise

the dilations and translations of which generate an orthonormal basis
{

� j,n(t)�
1√
2 j

�

(
t �2 jn

2 j

)}
( j,n)∈Z2

of the space L2(R) of signals having a finite energy

‖ f ‖2 �

∫ ��

��
| f (t)|2 dt ���.

Let us write 〈 f, g〉�
∫ ��

�� f (t) g∗(t) dt—the inner product in L2(R). Any finite energy
signal f can thus be represented by its wavelet inner-product coefficients

〈 f , � j,n〉�

∫ ��

��
f (t) � j,n(t) dt

and recovered by summing them in this wavelet orthonormal basis:

f �

��∑
j���

��∑
n���

〈 f , � j,n〉 �j,n. (1.3)

Each Haar wavelet � j,n(t) has a zero average over its support [2 jn, 2 j(n�1)]. If f
is locally regular and 2 j is small, then it is nearly constant over this interval and the
wavelet coefficient 〈 f , � j,n〉 is nearly zero.This means that large wavelet coefficients
are located at sharp signal transitions only.

With a jump in time, the story continues in 1980, when Strömberg [449] found
a piecewise linear function � that also generates an orthonormal basis and gives
better approximations of smooth functions. Meyer was not aware of this result,
and motivated by the work of Morlet and Grossmann over continuous wavelet
transform, he tried to prove that there exists no regular wavelet � that generates
an orthonormal basis. This attempt was a failure since he ended up constructing
a whole family of orthonormal wavelet bases, with functions � that are infinitely
continuously differentiable [375]. This was the fundamental impulse that led to a
widespread search for new orthonormal wavelet bases, which culminated in the
celebrated Daubechies wavelets of compact support [194].

Copyright © 2009 by Elsevier Inc. All rights reserved.
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The systematic theory for constructing orthonormal wavelet bases was estab-
lished by Meyer and Mallat through the elaboration of multiresolution signal
approximations [362], as presented in Chapter 7. It was inspired by original ideas
developed in computer vision by Burt and Adelson [126] to analyze images at sev-
eral resolutions. Digging deeper into the properties of orthogonal wavelets and
multiresolution approximations brought to light a surprising link with filter banks
constructed with conjugate mirror filters, and a fast wavelet transform algorithm
decomposing signals of size N with O(N ) operations [361].

Filter Banks
Motivated by speech compression,in 1976 Croisier,Esteban,and Galand [189] intro-
duced an invertible filter bank, which decomposes a discrete signal f [n] into two
signals of half its size using a filtering and subsampling procedure. They showed
that f [n] can be recovered from these subsampled signals by canceling the aliasing
terms with a particular class of filters called conjugate mirror filters. This break-
through led to a 10-year research effort to build a complete filter bank theory.
Necessary and sufficient conditions for decomposing a signal in subsampled com-
ponents with a filtering scheme, and recovering the same signal with an inverse
transform, were established by Smith and Barnwell [444],Vaidyanathan [469], and
Vetterli [471].

The multiresolution theory of Mallat [362] and Meyer [44] proves that any
conjugate mirror filter characterizes a wavelet � that generates an orthonormal basis
of L2(R), and that a fast discrete wavelet transform is implemented by cascading
these conjugate mirror filters [361].The equivalence between this continuous time
wavelet theory and discrete filter banks led to a new fruitful interface between
digital signal processing and harmonic analysis,first creating a culture shock that is
now well resolved.

Continuous versus Discrete and Finite
Originally, many signal processing engineers were wondering what is the point of
considering wavelets and signals as functions,since all computations are performed
over discrete signals with conjugate mirror filters.Why bother with the convergence
of infinite convolution cascades if in practice we only compute a finite number of
convolutions? Answering these important questions is necessary in order to under-
stand why this book alternates between theorems on continuous time functions
and discrete algorithms applied to finite sequences.

A short answer would be “simplicity.” In L2(R), a wavelet basis is constructed
by dilating and translating a single function �. Several important theorems relate the
amplitude of wavelet coefficients to the local regularity of the signal f . Dilations
are not defined over discrete sequences, and discrete wavelet bases are therefore
more complex to describe.The regularity of a discrete sequence is not well defined
either, which makes it more difficult to interpret the amplitude of wavelet coeffi-
cients. A theory of continuous-time functions gives asymptotic results for discrete

Copyright © 2009 by Elsevier Inc. All rights reserved.
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sequences with sampling intervals decreasing to zero.This theory is useful because
these asymptotic results are precise enough to understand the behavior of discrete
algorithms.

But continuous time or space models are not sufficient for elaborating discrete
signal-processing algorithms.The transition between continuous and discrete signals
must be done with great care to maintain important properties such as orthogo-
nality. Restricting the constructions to finite discrete signals adds another layer of
complexity because of border problems. How these border issues affect numer-
ical implementations is carefully addressed once the properties of the bases are
thoroughly understood.

Wavelets for Images
Wavelet orthonormal bases of images can be constructed from wavelet orthonormal
bases of one-dimensional signals. Three mother wavelets �1(x), �2(x), and �3(x),
with x �(x1, x2)∈R

2,are dilated by 2 j and translated by 2 jn with n�(n1, n2)∈Z
2.

This yields an orthonormal basis of the space L2(R2) of finite energy functions
f (x)� f (x1, x2):

{
�k

j,n(x)�
1

2 j
�k

(
x �2 jn

2 j

)}
j∈Z,n∈Z2,1�k�3

The support of a wavelet �k
j,n is a square of width proportional to the scale 2 j .

Two-dimensional wavelet bases are discretized to define orthonormal bases of
images including N pixels. Wavelet coefficients are calculated with the fast O(N )

algorithm described in Chapter 7.
Like in one dimension, a wavelet coefficient 〈 f , �k

j,n〉 has a small amplitude if

f (x) is regular over the support of �k
j,n. It has a large amplitude near sharp transi-

tions such as edges. Figure 1.1(b) is the array of N wavelet coefficients. Each direc-
tion k and scale 2 j corresponds to a subimage, which shows in black the position
of the largest coefficients above a threshold: |〈 f , �k

j,n〉|�T .

1.2 APPROXIMATION AND PROCESSING IN BASES
Analog-to-digital signal conversion is the first step of digital signal processing.
Chapter 3 explains that it amounts to projecting the signal over a basis of an appro-
ximation space. Most often, the resulting digital representation remains much too
large and needs to be further reduced. A digital image typically includes more than
106 samples and a CD music recording has 40 	103 samples per second. Sparse
representations that reduce the number of parameters can be obtained by thres-
holding coefficients in an appropriate orthogonal basis. Efficient compression and
noise-reduction algorithms are then implemented with simple operators in this
basis.

Copyright © 2009 by Elsevier Inc. All rights reserved.
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(a) (b)

(c) (d)

FIGURE 1.1

(a) Discrete image f [n] of N �2562 pixels. (b) Array of N orthogonal wavelet coefficients
〈 f , �k

j,n〉 for k�1, 2, 3, and 4 scales 2 j ; black points correspond to |〈 f , �k
j,n〉|
T . (c) Linear

approximation from the N/16 wavelet coefficients at the three largest scales. (d) Nonlinear
approximation from the M �N/16 wavelet coefficients of largest amplitude shown in (b).

Stochastic versus Deterministic Signal Models
A representation is optimized relative to a signal class, corresponding to all poten-
tial signals encountered in an application. This requires building signal models that
carry available prior information.

A signal f can be modeled as a realization of a random process F , the probability
distribution of which is known a priori.A Bayesian approach then tries to minimize

Copyright © 2009 by Elsevier Inc. All rights reserved.
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the expected approximation error. Linear approximations are simpler because they
only depend on the covariance. Chapter 9 shows that optimal linear approxima-
tions are obtained on the basis of principal components that are the eigenvectors
of the covariance matrix. However,the expected error of nonlinear approximations
depends on the full probability distribution of F . This distribution is most often
not known for complex signals, such as images or sounds, because their transient
structures are not adequately modeled as realizations of known processes such as
Gaussian ones.

To optimize nonlinear representations, weaker but sufficiently powerful deter-
ministic models can be elaborated. A deterministic model specifies a set �, where
the signal belongs.This set is defined by any prior information—for example,on the
time-frequency localization of transients in musical recordings or on the geometric
regularity of edges in images. Simple models can also define � as a ball in a functional
space, with a specific regularity norm such as a total variation norm. A stochastic
model is richer because it provides the probability distribution in �. When this dis-
tribution is not available, the average error cannot be calculated and is replaced by
the maximum error over �. Optimizing the representation then amounts to mini-
mizing this maximum error, which is called a minimax optimization.

1.2.1 Sampling with Linear Approximations
Analog-to-digital signal conversion is most often implemented with a linear approxi-
mation operator that filters and samples the input analog signal. From these samples,
a linear digital-to-analog converter recovers a projection of the original analog signal
over an approximation space whose dimension depends on the sampling density.
Linear approximations project signals in spaces of lowest possible dimensions to
reduce computations and storage cost, while controlling the resulting error.

Sampling Theorems
Let us consider finite energy signals ‖ f̄ ‖2 �

∫ | f̄ (x)|2 dx of finite support, which is
normalized to [0, 1] or [0, 1]2 for images.A sampling process implements a filtering
of f̄ (x) with a low-pass impulse response �̄s(x) and a uniform sampling to output
a discrete signal:

f [n]� f̄ � �̄s(ns) for 0�n�N .

In two dimensions,n�(n1, n2) and x �(x1, x2). These filtered samples can also be
written as inner products:

f̄ � �̄s(ns)�

∫
f (u) �̄s(ns �u) du� 〈 f (x), �s(x �ns)〉

with �s(x)� �̄s(�x). Chapter 3 explains that �s is chosen, like in the clas-
sic Shannon–Whittaker sampling theorem, so that a family of functions {�s

(x �ns)}1�n�N is a basis of an appropriate approximation space UN . The best lin-
ear approximation of f̄ in UN recovered from these samples is the orthogonal

Copyright © 2009 by Elsevier Inc. All rights reserved.
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projection f̄N of f in UN , and if the basis is orthonormal, then

f̄N (x)�

N�1∑
n�0

f [n] �s(x �ns). (1.4)

A sampling theorem states that if f̄ ∈UN then f̄ � f̄N so (1.4) recovers f̄ (x)

from the measured samples. Most often, f̄ does not belong to this approximation
space. It is called aliasing in the context of Shannon–Whittaker sampling, where
UN is the space of functions having a frequency support restricted to the N lower
frequencies. The approximation error ‖ f̄ � f̄N‖2 must then be controlled.

Linear Approximation Error
The approximation error is computed by finding an orthogonal basis B�
{ḡm(x)}0�m��� of the whole analog signal space L2[0, 1]2, with the first N vec-
tor {ḡm(x)}0�m�N that defines an orthogonal basis of UN . Thus, the orthogonal
projection on UN can be rewritten as

f̄N (x)�

N�1∑
m�0

〈 f̄ , ḡm〉 ḡm(x).

Since f̄ �
∑��

m�0 〈 f̄ , ḡm〉 ḡm, the approximation error is the energy of the removed
inner products:

�l(N , f )�‖ f̄ � f̄N ‖2 �

��∑
m�N

|〈 f̄ , ḡm〉|2.

This error decreases quickly when N increases if the coefficient amplitudes |〈 f̄ , ḡm〉|
have a fast decay when the index m increases. The dimension N is adjusted to the
desired approximation error.

Figure 1.1(a) shows a discrete image f [n] approximated with N �2562 pixels.
Figure 1.1(c) displays a lower-resolution image fN/16 projected on a space UN/16 of
dimension N/16,generated by N/16 large-scale wavelets. It is calculated by setting
all the wavelet coefficients to zero at the first two smaller scales.The approximation
error is ‖ f � fN/16‖2/‖ f ‖2 �14 	10�3. Reducing the resolution introduces more
blur and errors. A linear approximation space UN corresponds to a uniform grid
that approximates precisely uniform regular signals. Since images f̄ are often not
uniformly regular, it is necessary to measure it at a high-resolution N . This is why
digital cameras have a resolution that increases as technology improves.

1.2.2 Sparse Nonlinear Approximations
Linear approximations reduce the space dimensionality but can introduce important
errors when reducing the resolution if the signal is not uniformly regular, as shown
by Figure 1.1(c). To improve such approximations, more coefficients should be
kept where needed—not in regular regions but near sharp transitions and edges.

Copyright © 2009 by Elsevier Inc. All rights reserved.
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This requires defining an irregular sampling adapted to the local signal regularity.
This optimized irregular sampling has a simple equivalent solution through nonlinear
approximations in wavelet bases.

Nonlinear approximations operate in two stages. First, a linear operator approx-
imates the analog signal f̄ with N samples written f [n]� f̄ � �̄s(ns). Then, a
nonlinear approximation of f [n] is computed to reduce the N coefficients f [n]
to M �N coefficients in a sparse representation.

The discrete signal f can be considered as a vector of C
N. Inner products and

norms in C
N are written

〈 f , g〉�

N�1∑
n�0

f [n] g∗[n] and ‖ f ‖2 �

N�1∑
n�0

| f [n]|2.

To obtain a sparse representation with a nonlinear approximation,we choose a new
orthonormal basis B� {gm[n]}m∈� of C

N , which concentrates the signal energy as
much as possible over few coefficients. Signal coefficients {〈 f , gm〉}m∈� are com-
puted from the N input sample values f [n] with an orthogonal change of basis
that takes N2 operations in nonstructured bases. In a wavelet or Fourier bases, fast
algorithms require, respectively, O(N ) and O(N log2 N ) operations.

Approximation by Thresholding
For M �N ,an approximation fM is computed by selecting the“best”M �N vectors
within B. The orthogonal projection of f on the space V
 generated by M vectors
{gm}m∈
 in B is

f
 �
∑
m∈


〈 f , gm〉 gm. (1.5)

Since f �
∑

m∈� 〈 f , gm〉 gm, the resulting error is

‖ f � f
‖2 �
∑
m/∈


|〈 f , gm〉|2. (1.6)

We write |
| the size of the set 
. The best M � |
| term approximation, which
minimizes ‖ f � f
‖2, is thus obtained by selecting the M coefficients of largest
amplitude. These coefficients are above a threshold T that depends on M :

fM � f
T �
∑

m∈
T

〈 f , gm〉 gm with 
T � {m∈� : |〈 f , gm〉|�T }. (1.7)

This approximation is nonlinear because the approximation set 
T changes with
f . The resulting approximation error is:

�n(M, f )�‖ f � fM‖2 �
∑

m/∈
T

|〈 f , gm〉|2. (1.8)

Figure 1.1(b) shows that the approximation support 
T of an image in a wavelet
orthonormal basis depends on the geometry of edges and textures. Keeping large

Copyright © 2009 by Elsevier Inc. All rights reserved.
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wavelet coefficients is equivalent to constructing an adaptive approximation grid
specified by the scale–space support 
T . It increases the approximation resolution
where the signal is irregular. The geometry of 
T gives the spatial distribution of
sharp image transitions and edges, and their propagation across scales. Chapter 6
proves that wavelet coefficients give important information about singularities
and local Lipschitz regularity. This example illustrates how approximation support
provides“geometric”information on f ,relative to a dictionary,that is a wavelet basis
in this example.

Figure 1.1(d) gives the nonlinear wavelet approximation fM recovered from the
M �N/16 large-amplitude wavelet coefficients, with an error ‖ f � fM‖2/‖ f ‖2 �
5 	10�3. This error is nearly three times smaller than the linear approximation
error obtained with the same number of wavelet coefficients,and the image quality
is much better.

An analog signal can be recovered from the discrete nonlinear approxima-
tion fM :

f̄M (x)�

N�1∑
n�0

fM [n] �s(x �ns).

Since all projections are orthogonal, the overall approximation error on the orig-
inal analog signal f̄ (x) is the sum of the analog sampling error and the discrete
nonlinear error:

‖ f̄ � f̄M‖2 �‖ f̄ � f̄N ‖2 �‖ f � fM‖2 ��l(N , f )��n(M, f ).

In practice, N is imposed by the resolution of the signal-acquisition hardware, and
M is typically adjusted so that �n(M, f )��l(N , f ).

Sparsity with Regularity
Sparse representations are obtained in a basis that takes advantage of some form
of regularity of the input signals, creating many small-amplitude coefficients. Since
wavelets have localized support, functions with isolated singularities produce few
large-amplitude wavelet coefficients in the neighborhood of these singularities. Non-
linear wavelet approximation produces a small error over spaces of functions that
do not have “too many” sharp transitions and singularities. Chapter 9 shows that
functions having a bounded total variation norm are useful models for images with
nonfractal (finite length) edges.

Edges often define regular geometric curves. Wavelets detect the location of
edges but their square support cannot take advantage of their potential geometric
regularity. More sparse representations are defined in dictionaries of curvelets or
bandlets,which have elongated support in multiple directions, that can be adapted
to this geometrical regularity. In such dictionaries,the approximation support 
T is
smaller but provides explicit information about edges’ local geometrical properties
such as their orientation. In this context, geometry does not just apply to multidi-
mensional signals. Audio signals, such as musical recordings, also have a complex
geometric regularity in time-frequency dictionaries.

Copyright © 2009 by Elsevier Inc. All rights reserved.
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1.2.3 Compression
Storage limitations and fast transmission through narrow bandwidth channels
require compression of signals while minimizing degradation. Transform codes
compress signals by coding a sparse representation. Chapter 10 introduces the
information theory needed to understand these codes and to optimize their
performance.

In a compression framework, the analog signal has already been discretized into
a signal f [n] of size N . This discrete signal is decomposed in an orthonormal basis
B� {gm}m∈� of C

N :

f �
∑
m∈�

〈 f , gm〉 gm.

Coefficients 〈 f , gm〉 are approximated by quantized values Q(〈 f , gm〉). If Q is a
uniform quantizer of step �, then |x �Q(x)|��/2; and if |x|��/2, then Q(x)�0.
The signal f̃ restored from quantized coefficients is

f̃ �
∑
m∈�

Q(〈 f , gm〉) gm.

An entropy code records these coefficients with R bits. The goal is to minimize the
signal-distortion rate d(R, f )�‖ f̃ � f ‖2.

The coefficients not quantized to zero correspond to the set 
T � {m∈� :
|〈 f , gm〉|�T } with T ��/2. For sparse signals,Chapter 10 shows that the bit budget
R is dominated by the number of bits to code 
T in �,which is nearly proportional
to its size |
T |. This means that the “information” about a sparse representation is
mostly geometric. Moreover, the distortion is dominated by the nonlinear approxi-
mation error ‖ f � f
T ‖2, for f
T �

∑
m∈
T

〈 f , gm〉gm. Compression is thus a sparse
approximation problem. For a given distortion d(R, f ), minimizing R requires
reducing |
T | and thus optimizing the sparsity.

The number of bits to code 
T can take advantage of any prior information on
the geometry. Figure 1.1(b) shows that large wavelet coefficients are not randomly
distributed.They have a tendency to be aggregated toward larger scales, and at fine
scales they are regrouped along edge curves or in texture regions. Using such prior
geometric models is a source of gain in coders such as JPEG-2000.

Chapter 10 describes the implementation of audio transform codes. Image trans-
form codes in block cosine bases and wavelet bases are introduced, together with
the JPEG and JPEG-2000 compression standards.

1.2.4 Denoising
Signal-acquisition devices add noise that can be reduced by estimators using prior
information on signal properties. Signal processing has long remained mostly
Bayesian and linear. Nonlinear smoothing algorithms existed in statistics, but
these procedures were often ad hoc and complex. Two statisticians, Donoho and
Johnstone [221], changed the“game”by proving that simple thresholding in sparse

Copyright © 2009 by Elsevier Inc. All rights reserved.
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representations can yield nearly optimal nonlinear estimators. This was the begin-
ning of a considerable refinement of nonlinear estimation algorithms that is still
ongoing.

Let us consider digital measurements that add a random noise W [n] to the
original signal f [n]:

X[n]� f [n]�W [n] for 0�n�N .

The signal f is estimated by transforming the noisy data X with an operator D:

F̃ �DX .

The risk of the estimator F̃ of f is the average error, calculated with respect to the
probability distribution of noise W :

r(D, f )�E{‖ f �DX‖2}.

Bayes versus Minimax
To optimize the estimation operator D,one must take advantage of prior information
available about signal f . In a Bayes framework, f is considered a realization of a
random vector F and the Bayes risk is the expected risk calculated with respect to
the prior probability distribution � of the random signal model F :

r(D, �)�E�{r(D, F)}.
Optimizing D among all possible operators yields the minimum Bayes risk:

rn(�)� inf
all D

r(D, �).

In the 1940s,Wald brought in a new perspective on statistics with a decision the-
ory partly imported from the theory of games.This point of view uses deterministic
models, where signals are elements of a set �, without specifying their probability
distribution in this set.To control the risk for any f ∈�,we compute the maximum
risk:

r(D, �)�sup
f ∈�

r(D, f ).

The minimax risk is the lower bound computed over all operators D:

rn(�)� inf
all D

r(D, �).

In practice, the goal is to find an operator D that is simple to implement and yields
a risk close to the minimax lower bound.

Thresholding Estimators
It is tempting to restrict calculations to linear operators D because of their simplicity.
Optimal linear Wiener estimators are introduced in Chapter 11. Figure 1.2(a) is an
image contaminated by Gaussian white noise. Figure 1.2(b) shows an optimized
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(a) (b)

(c) (d)

FIGURE 1.2

(a) Noisy image X . (b) Noisy wavelet coefficients above threshold, |〈X, �j,n〉|�T . (c) Linear
estimation X � h. (d) Nonlinear estimator recovered from thresholded wavelet coefficients over
several translated bases.

linear filtering estimation F̃ �X � h[n],which is therefore diagonal in a Fourier basis
B. This convolution operator averages the noise but also blurs the image and keeps
low-frequency noise by retaining the image’s low frequencies.

If f has a sparse representation in a dictionary, then projecting X on the
vectors of this sparse support can considerably improve linear estimators. The dif-
ficulty is identifying the sparse support of f from the noisy data X . Donoho and
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Johnstone [221] proved that, in an orthonormal basis, a simple thresholding of
noisy coefficients does the trick. Noisy signal coefficients in an orthonormal basis
B� {gm}m∈� are

〈X, gm〉� 〈 f , gm〉� 〈W, gm〉 for m∈�.

Thresholding these noisy coefficients yields an orthogonal projection estimator

F̃ �X

̃T

�
∑

m∈
̃T

〈X, gm〉 gm with 
̃T � {m∈� : |〈X, gm〉|�T }. (1.9)

The set 
̃T is an estimate of an approximation support of f . It is hopefully close to
the optimal approximation support 
T � {m∈� : |〈 f , gm〉|�T }.

Figure 1.2(b) shows the estimated approximation set 
̃T of noisy-wavelet coef-
ficients, |〈X, �j,n|�T , that can be compared to the optimal approximation support

T shown in Figure 1.1(b). The estimation in Figure 1.2(d) from wavelet coeffi-
cients in 
̃T has considerably reduced the noise in regular regions while keeping
the sharpness of edges by preserving large-wavelet coefficients. This estimation is
improved with a translation-invariant procedure that averages this estimator over
several translated wavelet bases. Thresholding wavelet coefficients implements an
adaptive smoothing, which averages the data X with a kernel that depends on the
estimated regularity of the original signal f .

Donoho and Johnstone proved that for Gaussian white noise of variance �2,
choosing T ��

√
2 loge N yields a risk E{‖ f � F̃‖2} of the order of ‖ f � f
T ‖2,up to

a loge N factor. This spectacular result shows that the estimated support 
̃T does
nearly as well as the optimal unknown support 
T . The resulting risk is small if the
representation is sparse and precise.

The set 
̃T in Figure 1.2(b) “looks” different from the 
T in Figure 1.1(b)
because it has more isolated points. This indicates that some prior information
on the geometry of 
T could be used to improve the estimation. For audio noise-
reduction,thresholding estimators are applied in sparse representations provided by
time-frequency bases. Similar isolated time-frequency coefficients produce a highly
annoying “musical noise.” Musical noise is removed with a block thresholding that
regularizes the geometry of the estimated support 
̃T and avoids leaving isolated
points. Block thresholding also improves wavelet estimators.

If W is a Gaussian noise and signals in � have a sparse representation in B, then
Chapter 11 proves that thresholding estimators can produce a nearly minimax risk.
In particular, wavelet thresholding estimators have a nearly minimax risk for large
classes of piecewise smooth signals, including bounded variation images.

1.3 TIME-FREQUENCY DICTIONARIES
Motivated by quantum mechanics, in 1946 the physicist Gabor [267] proposed
decomposing signals over dictionaries of elementary waveforms which he called
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time-frequency atoms that have a minimal spread in a time-frequency plane.
By showing that such decompositions are closely related to our perception of
sounds, and that they exhibit important structures in speech and music recordings,
Gabor demonstrated the importance of localized time-frequency signal process-
ing. Beyond sounds, large classes of signals have sparse decompositions as sums of
time-frequency atoms selected from appropriate dictionaries. The key issue is to
understand how to construct dictionaries with time-frequency atoms adapted to
signal properties.

1.3.1 Heisenberg Uncertainty
A time-frequency dictionary D� {��}�∈� is composed of waveforms of unit norm
‖��‖�1, which have a narrow localization in time and frequency. The time locali-
zation u of �� and its spread around u, are defined by

u�

∫
t|��(t)|2 dt and �2

t,� �

∫
|t �u|2 |��(t)|2 dt.

Similarly, the frequency localization and spread of �̂� are defined by

	 �(2�)�1
∫

�|�̂�(�)|2 d� and �2
�,� �(2�)�1

∫
|��	|2 |�̂�(�)|2 d�.

The Fourier Parseval formula

〈 f , ��〉�

∫ ��

��
f (t) �∗

�(t) dt �
1

2�

∫ ��

��
f̂ (�) �̂∗

�(�) d� (1.10)

shows that 〈 f , ��〉 depends mostly on the values f (t) and f̂ (�), where ��(t) and

�̂�(�) are nonnegligible , and hence for (t, �) in a rectangle centered at (u, 	), of
size �t,� 	��,� . This rectangle is illustrated by Figure 1.3 in this time-frequency
plane (t, �). It can be interpreted as a“quantum of information”over an elementary

u

	

0 t

�

|�� (t)|

|�� (�)| �t

��

^

FIGURE 1.3

Heisenberg box representing an atom �� .

Copyright © 2009 by Elsevier Inc. All rights reserved.



“Mallat: 05-ch01-p374370” — 2009/3/7 — 17:59 — page 16 — #16

16 CHAPTER 1 Sparse Representations

resolution cell. The uncertainty principle theorem proves (see Chapter 2) that this
rectangle has a minimum surface that limits the joint time-frequency resolution:

�t,� ��,� �
1

2
. (1.11)

Constructing a dictionary of time-frequency atoms can thus be thought of as
covering the time-frequency plane with resolution cells having a time width �t,� and
a frequency width ��,� which may vary but with a surface larger than one-half.
Windowed Fourier and wavelet transforms are two important examples.

1.3.2 Windowed Fourier Transform
A windowed Fourier dictionary is constructed by translating in time and frequency
a time window g(t), of unit norm ‖g‖�1, centered at t �0:

D�
{
gu,	(t)�g(t �u) ei	t

}
(u,	)∈R2

.

The atom gu,	 is translated by u in time and by 	 in frequency.The time-and-frequency
spread of gu,	 is independent of u and 	.This means that each atom gu,	 corresponds
to a Heisenberg rectangle that has a size �t 	�� independent of its position (u, 	),
as shown by Figure 1.4.

The windowed Fourier transform projects f on each dictionary atom gu,	 :

Sf (u, 	)� 〈 f , gu,	〉�

∫ ��

��
f (t) g(t �u) e�i	t dt. (1.12)

It can be interpreted as a Fourier transform of f at the frequency 	, localized by
the window g(t �u) in the neighborhood of u. This windowed Fourier transform
is highly redundant and represents one-dimensional signals by a time-frequency
image in (u, 	). It is thus necessary to understand how to select many fewer time-
frequency coefficients that represent the signal efficiently.

�

0 t

�

|gv,� (�)|

|gu, 	 (�)|

|gv, � (t)||gu, 	 (t)|

^

^

�t

��

�t

��

u v

	

FIGURE 1.4

Time-frequency boxes (“Heisenberg rectangles”) representing the energy spread of two
windowed Fourier atoms.
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When listening to music, we perceive sounds that have a frequency that varies
in time. Chapter 4 shows that a spectral line of f creates high-amplitude win-
dowed Fourier coefficients Sf (u, 	) at frequencies 	(u) that depend on time u.
These spectral components are detected and characterized by ridge points, which
are local maxima in this time-frequency plane. Ridge points define a time-frequency
approximation support 
 of f with a geometry that depends on the time-frequency
evolution of the signal spectral components. Modifying the sound duration or audio
transpositions are implemented by modifying the geometry of the ridge support in
time frequency.

A windowed Fourier transform decomposes signals over waveforms that have
the same time and frequency resolution. It is thus effective as long as the signal does
not include structures having different time-frequency resolutions,some being very
localized in time and others very localized in frequency. Wavelets address this issue
by changing the time and frequency resolution.

1.3.3 Continuous Wavelet Transform
In reflection seismology,Morlet knew that the waveforms sent underground have a
duration that is too long at high frequencies to separate the returns of fine, closely
spaced geophysical layers. Such waveforms are called wavelets in geophysics.
Instead of emitting pulses of equal duration, he thought of sending shorter wave-
forms at high frequencies. These waveforms were obtained by scaling the mother
wavelet, hence the name of this transform. Although Grossmann was working in
theoretical physics, he recognized in Morlet’s approach some ideas that were close
to his own work on coherent quantum states.

Nearly forty years after Gabor, Morlet and Grossmann reactivated a fundamen-
tal collaboration between theoretical physics and signal processing, which led to
the formalization of the continuous wavelet transform [288]. These ideas were not
totally new to mathematicians working in harmonic analysis,or to computer vision
researchers studying multiscale image processing. It was thus only the beginning of
a rapid catalysis that brought together scientists with very different backgrounds.

A wavelet dictionary is constructed from a mother wavelet � of zero average
∫ ��

��
�(t) dt �0,

which is dilated with a scale parameter s, and translated by u:

D�
{

�u,s(t)�
1√
s

�

(
t �u

s

)}
u∈R,s
0

. (1.13)

The continuous wavelet transform of f at any scale s and position u is the projection
of f on the corresponding wavelet atom:

W f (u, s)� 〈 f , �u,s〉�

∫ ��

��
f (t)

1√
s

�∗
(

t �u

s

)
dt. (1.14)

It represents one-dimensional signals by highly redundant time-scale images in (u, s).
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Varying Time-Frequency Resolution
As opposed to windowed Fourier atoms, wavelets have a time-frequency reso-
lution that changes. The wavelet �u,s has a time support centered at u and
proportional to s. Let us choose a wavelet � whose Fourier transform �̂(�) is
nonzero in a positive frequency interval centered at 
. The Fourier transform �̂u,s(�)

is dilated by 1/s and thus is localized in a positive frequency interval centered at
	 �
/s; its size is scaled by 1/s. In the time-frequency plane, the Heisenberg box of
a wavelet atom �u,s is therefore a rectangle centered at (u, 
/s), with time and fre-
quency widths, respectively, proportional to s and 1/s. When s varies, the time and
frequency width of this time-frequency resolution cell changes,but its area remains
constant, as illustrated by Figure 1.5.

Large-amplitude wavelet coefficients can detect and measure short high-
frequency variations because they have a narrow time localization at high fre-
quencies. At low frequencies their time resolution is lower, but they have a better
frequency resolution.This modification of time and frequency resolution is adapted
to represent sounds with sharp attacks,or radar signals having a frequency that may
vary quickly at high frequencies.

Multiscale Zooming
A wavelet dictionary is also adapted to analyze the scaling evolution of transients
with zooming procedures across scales. Suppose now that � is real. Since it has a zero
average,a wavelet coefficient Wf (u, s) measures the variation of f in a neighborhood
of u that has a size proportional to s. Sharp signal transitions create large-amplitude
wavelet coefficients.

|�u, s (�)|

�u, s �u0, s0

^

|�u0, s0
(�)|^

0 t

�

u u0

��
s

��

s0�t

s0

s



s0




s �t

FIGURE 1.5

Heisenberg time-frequency boxes of two wavelets, �u,s and �u0,s0 . When the scale s
decreases, the time support is reduced but the frequency spread increases and covers an
interval that is shifted toward high frequencies.
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Signal singularities have specific scaling invariance characterized by Lipschitz
exponents. Chapter 6 relates the pointwise regularity of f to the asymptotic decay
of the wavelet transform amplitude |Wf (u, s)| when s goes to zero. Singulari-
ties are detected by following the local maxima of the wavelet transform across
scales.

In images,wavelet local maxima indicate the position of edges,which are sharp
variations of image intensity. It defines scale–space approximation support of f
from which precise image approximations are reconstructed. At different scales,
the geometry of this local maxima support provides contours of image structures
of varying sizes. This multiscale edge detection is particularly effective for pattern
recognition in computer vision [146].

The zooming capability of the wavelet transform not only locates isolated sin-
gular events, but can also characterize more complex multifractal signals having
nonisolated singularities. Mandelbrot [41] was the first to recognize the existence
of multifractals in most corners of nature. Scaling one part of a multifractal pro-
duces a signal that is statistically similar to the whole.This self-similarity appears in
the continuous wavelet transform, which modifies the analyzing scale. From global
measurements of the wavelet transform decay, Chapter 6 measures the singular-
ity distribution of multifractals. This is particularly important in analyzing their
properties and testing multifractal models in physics or in financial time series.

1.3.4 Time-Frequency Orthonormal Bases
Orthonormal bases of time-frequency atoms remove all redundancy and define sta-
ble representations.A wavelet orthonormal basis is an example of the time-frequency
basis obtained by scaling a wavelet � with dyadic scales s �2 j and translating it by
2 jn, which is written �j,n. In the time-frequency plane, the Heisenberg resolution
box of �j,n is a dilation by 2 j and translation by 2 jn of the Heisenberg box of �.
A wavelet orthonormal is thus a subdictionary of the continuous wavelet transform
dictionary, which yields a perfect tiling of the time-frequency plane illustrated in
Figure 1.6.

One can construct many other orthonormal bases of time-frequency atoms,cor-
responding to different tilings of the time-frequency plane.Wavelet packet and local
cosine bases are two important examples constructed in Chapter 8, with time-
frequency atoms that split the frequency and the time axis, respectively, in intervals
of varying sizes.

Wavelet Packet Bases
Wavelet bases divide the frequency axis into intervals of 1 octave bandwidth.
Coifman, Meyer, and Wickerhauser [182] have generalized this construction with
bases that split the frequency axis in intervals of bandwidth that may be adjusted.
Each frequency interval is covered by the Heisenberg time-frequency boxes of
wavelet packet functions translated in time, in order to cover the whole plane,
as shown by Figure 1.7.
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�j, n(t) �j11, p(t)

t

t

�

FIGURE 1.6

The time-frequency boxes of a wavelet basis define a tiling of the time-frequency plane.

t0

�

FIGURE 1.7

A wavelet packet basis divides the frequency axis in separate intervals of varying sizes. A tiling
is obtained by translating in time the wavelet packets covering each frequency interval.

As for wavelets, wavelet-packet coefficients are obtained with a filter bank of
conjugate mirror filters that split the frequency axis in several frequency intervals.
Different frequency segmentations correspond to different wavelet packet bases.
For images, a filter bank divides the image frequency support in squares of dyadic
sizes that can be adjusted.

Local Cosine Bases
Local cosine orthonormal bases are constructed by dividing the time axis instead
of the frequency axis.The time axis is segmented in successive intervals [ap, ap�1].
The local cosine bases of Malvar [368] are obtained by designing smooth windows
gp(t) that cover each interval [ap, ap�1], and by multiplying them by cosine func-
tions cos(	t ��) of different frequencies. This is yet another idea that has been
independently studied in physics,signal processing,and mathematics. Malvar’s orig-
inal construction was for discrete signals. At the same time, the physicist Wilson
[486] was designing a local cosine basis, with smooth windows of infinite support,
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FIGURE 1.8

A local cosine basis divides the time axis with smooth windows gp(t) and translates these
windows into frequency.

to analyze the properties of quantum coherent states. Malvar bases were also redis-
covered and generalized by the harmonic analysts Coifman and Meyer [181].These
different views of the same bases brought to light mathematical and algorithmic
properties that opened new applications.

A multiplication by cos(	t ��) translates the Fourier transform ĝp(�) of gp(t) by
�	. Over positive frequencies, the time-frequency box of the modulated window
gp(t) cos(	t ��) is therefore equal to the time-frequency box of gp translated by
	 along frequencies. Figure 1.8 shows the time-frequency tiling corresponding to
such a local cosine basis. For images, a two-dimensional cosine basis is constructed
by dividing the image support in squares of varying sizes.

1.4 SPARSITY IN REDUNDANT DICTIONARIES
In natural languages, large dictionaries are needed to refine ideas with short sen-
tences, and they evolve with usage. Eskimos have eight different words to describe
snow quality, whereas a single word is typically sufficient in a Parisian dictionary.
Similarly, large signal dictionaries of vectors are needed to construct sparse rep-
resentations of complex signals. However, computing and optimizing a signal
approximation by choosing the best M dictionary vectors is much more difficult.

1.4.1 Frame Analysis and Synthesis
Suppose that a sparse family of vectors {�p}p∈
 has been selected to approximate
a signal f . An approximation can be recovered as an orthogonal projection in
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the space V
 generated by these vectors. We then face one of the following two
problems.

1. In a dual-synthesis problem,the orthogonal projection f
 of f in V
 must be
computed from dictionary coefficients, {〈 f , �p〉}p∈
,provided by an analysis
operator. This is the case when a signal transform {〈 f , �p〉}p∈� is calculated in
some large dictionary and a subset of inner products are selected. Such inner
products may correspond to coefficients above a threshold or local maxima
values.

2. In a dual-analysis problem, the decomposition coefficients of f
 must be
computed on a family of selected vectors {�p}p∈
. This problem appears
when sparse representation algorithms select vectors as opposed to inner
products.This is the case for pursuit algorithms,which compute approxima-
tion supports in highly redundant dictionaries.

The frame theory gives energy equivalence conditions to solve both problems
with stable operators.A family {�p}p∈
 is a frame of the space V it generates if there
exists B�A
0 such that

�h∈V, A‖h‖2 �
∑
m∈


|〈h, �p〉|2 � B‖h‖2.

The representation is stable since any perturbation of frame coefficients implies
a modification of similar magnitude on h. Chapter 5 proves that the existence
of a dual frame {�̃p}p∈
 that solves both the dual-synthesis and dual-analysis
problems:

f
 �
∑
p∈


〈 f , �p〉 �̃p �
∑
p∈


〈 f , �̃p〉 �p. (1.15)

Algorithms are provided to calculate these decompositions. The dual frame is also
stable:

�f ∈ V, B�1‖ f ‖2 �
∑
m∈�

|〈 f , �̃p〉|2 � B�1‖ f ‖2.

The frame bounds A and B are redundancy factors. If the vectors {�p}p∈� are
normalized and linearly independent, then A�1�B. Such a dictionary is called a
Riesz basis of V and the dual frame is biorthogonal:

�( p, p�)∈
2, 〈�p, �̃p�〉��[ p�p�].
When the basis is orthonormal, then both bases are equal. Analysis and synthesis
problems are then identical.

The frame theory is also used to construct redundant dictionaries that define com-
plete,stable,and redundant signal representations,where V is then the whole signal
space. The frame bounds measure the redundancy of such dictionaries. Chapter 5
studies the construction of windowed Fourier and wavelet frame dictionaries by
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sampling their time, frequency, and scaling parameters, while controlling frame
bounds. In two dimensions, directional wavelet frames include wavelets sensitive
to directional image structures such as textures or edges.

To improve the sparsity of images having edges along regular geometric curves,
Candès and Donoho [134] introduced curvelet frames, with elongated waveforms
having different directions, positions, and scales. Images with piecewise regular
edges have representations that are asymptotically more sparse by thresholding
curvelet coefficients than wavelet coefficients.

1.4.2 Ideal Dictionary Approximations
In a redundant dictionary D� {�p}p∈�, we would like to find the best approximation
support 
 with M � |
| vectors, which minimize the error ‖ f � f
‖2. Chapter 12
proves that it is equivalent to find 
T , which minimizes the corresponding appro-
ximation Lagrangian

L0(T , f , 
)�‖ f � f
‖2 �T 2|
|, (1.16)

for some multiplier T .
Compression and denoising are two applications of redundant dictionary

approximations. When compressing signals by quantizing dictionary coefficients,
the distortion rate varies,like the Lagrangian (1.16),with a multiplier T that depends
on the quantization step. Optimizing the coder is thus equivalent to minimizing this
approximation Lagrangian. For sparse representations,most of the bits are devoted
to coding the geometry of the sparse approximation set 
T in �.

Estimators reducing noise from observations X � f �W are also optimized by
finding a best orthogonal projector over a set of dictionary vectors. The model
selection theory of Barron, Birgé, and Massart [97] proves that finding 
̃T , which
minimizes this same Lagrangian L0(T , X, 
), defines an estimator that has a risk on
the same order as the minimum approximation error ‖ f � f
T ‖2 up to a logarithmic
factor. This is similar to the optimality result obtained for thresholding estimators
in an orthonormal basis.

The bad news is that minimizing the approximation Lagrangian L0 is an NP-hard
problem and is therefore computationally intractable. It is necessary therefore to
find algorithms that are sufficiently fast to compute suboptimal,but “good enough,”
solutions.

Dictionaries of Orthonormal Bases
To reduce the complexity of optimal approximations, the search can be reduced to
subfamilies of orthogonal dictionary vectors. In a dictionary of orthonormal bases,
any family of orthogonal dictionary vectors can be complemented to form an orthog-
onal basis B included in D.As a result, the best approximation of f from orthogonal
vectors in B is obtained by thresholding the coefficients of f in a “best basis” in D.

For tree dictionaries of orthonormal bases obtained by a recursive split of
orthogonal vector spaces, the fast,dynamic programming algorithm of Coifman and
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Wickerhauser [182] finds such a best basis with O(P) operations, where P is the
dictionary size.

Wavelet packet and local cosine bases are examples of tree dictionaries of time-
frequency orthonormal bases of size P �N log2 N . A best basis is a time-frequency
tiling that is the best match to the signal time-frequency structures.

To approximate geometrically regular edges, wavelets are not as efficient as
curvelets,but wavelets provide more sparse representations of singularities that are
not distributed along geometrically regular curves. Bandlet dictionaries, introduced
by Le Pennec, Mallat, and Peyré [342, 365], are dictionaries of orthonormal bases
that can adapt to the variability of images’ geometric regularity. Minimax optimal
asymptotic rates are derived for compression and denoising.

1.4.3 Pursuit in Dictionaries
Approximating signals only from orthogonal vectors brings rigidity that limits the
ability to optimize the representation. Pursuit algorithms remove this constraint
with flexible procedures that search for sparse, although not necessarily optimal,
dictionary approximations. Such approximations are computed by optimizing the
choice of dictionary vectors {�p}p∈
.

Matching Pursuit
Matching pursuit algorithms introduced by Mallat and Zhang [366] are greedy algo-
rithms that optimize approximations by selecting dictionary vectors one by one.
The vector in �p0 ∈D that best approximates a signal f is

�p0 � argmax
p∈�

|〈 f , �p〉|

and the residual approximation error is

Rf � f � 〈 f , �p0〉 �p0 .

A matching pursuit further approximates the residue Rf by selecting another
best vector �p1 from the dictionary and continues this process over next-order
residues Rmf , which produces a signal decomposition:

f �

M�1∑
m�0

〈R m f , �pm〉 �pm �R M f .

The approximation from the M -selected vectors {�pm}0�m�M can be refined with
an orthogonal back projection on the space generated by these vectors. An orthog-
onal matching pursuit further improves this decomposition by orthogonalizing
progressively the projection directions �pm during the decompositon.The resulting
decompositions are applied to compression, denoising, and pattern recognition of
various types of signals, images, and videos.
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Basis Pursuit
Approximating f with a minimum number of nonzero coefficients a[ p] in a dic-
tionary D is equivalent to minimizing the l 0 norm ‖a‖0, which gives the number
of nonzero coefficients.This l 0 norm is highly nonconvex,which explains why the
resulting minimization is NP-hard. Donoho and Chen [158] thus proposed replac-
ing the l 0 norm by the l1 norm ‖a‖1 �

∑
p∈� |a[ p]|, which is convex. The resulting

basis pursuit algorithm computes a synthesis operator

f �
∑
p∈�

a[ p] �p, which minimizes ‖a‖1 �
∑
p∈�

|a[ p]|. (1.17)

This optimal solution is calculated with a linear programming algorithm.
A basis pursuit is computationally more intense than a matching pursuit, but
it is a more global optimization that yields representations that can be more
sparse.

In approximation, compression, or denoising applications, f is recovered with
an error bounded by a precision parameter �.The optimization (1.18) is thus relaxed
by finding a synthesis such that

‖ f �
∑
p∈�

a[ p] �p‖��, which minimizes ‖a‖1 �
∑
p∈�

|a[ p]|. (1.18)

This is a convex minimization problem, with a solution calculated by minimizing
the corresponding l1 Lagrangian

L1(T , f , a)�‖ f �
∑
p∈�

a[ p] �p‖2 �T ‖a‖1,

where T is a Lagrange multiplier that depends on �. This is called an l1 Lagrangian
pursuit in this book. A solution ã[ p] is computed with iterative algorithms that are
guaranteed to converge. The number of nonzero coordinates of ã typically decrea-
ses as T increases.

Incoherence for Support Recovery
Matching pursuit and l1 Lagrangian pursuits are optimal if they recover the approx-
imation support 
T , which minimizes the approximation Lagrangian

L0(T , f , 
)�‖ f � f
‖2 �T 2 |
|,
where f
 is the orthogonal projection of f in the space V
 generated by {�p}p∈
.
This is not always true and depends on 
T . An Exact Recovery Criteria proved by
Tropp [464] guarantees that pursuit algorithms do recover the optimal support

T if

ERC(
T )� max
q /∈
T

∑
p∈
T

|〈�̃p, �q〉|�1, (1.19)
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where {�̃p}p∈
T is the biorthogonal basis of {�p}p∈
T in V
T .This criterion implies
that dictionary vectors �q outside 
T should have a small inner product with vectors
in 
T .

This recovery is stable relative to noise perturbations if {�p}p∈
 has Riesz bounds
that are not too far from 1. These vectors should be nearly orthogonal and hence
have small inner products. These small inner-product conditions are interpreted
as a form of incoherence. A stable recovery of 
T is possible if vectors in 
T are
incoherent with respect to other dictionary vectors and are incoherent between
themselves. It depends on the geometric configuration of 
T in �.

1.5 INVERSE PROBLEMS
Most digital measurement devices, such as cameras, microphones, or medical imag-
ing systems, can be modeled as a linear transformation of an incoming analog
signal,plus noise due to intrinsic measurement fluctuations or to electronic noises.
This linear transformation can be decomposed into a stable analog-to-digital linear
conversion followed by a discrete operator U that carries the specific trans-
fer function of the measurement device. The resulting measured data can be
written

Y [q]�Uf [q]�W [q],

where f ∈C
N is the high-resolution signal we want to recover, and W [q] is the

measurement noise. For a camera with an optic that is out of focus, the operator
U is a low-pass convolution producing a blur. For a magnetic resonance imaging
system, U is a Radon transform integrating the signal along rays and the number
Q of measurements is smaller than N . In such problems, U is not invertible and
recovering an estimate of f is an ill-posed inverse problem.

Inverse problems are among the most difficult signal-processing problems with
considerable applications. When data acquisition is difficult,costly,or dangerous,or
when the signal is degraded, super-resolution is important to recover the highest
possible resolution information.This applies to satellite observations,seismic explo-
ration,medical imaging,radar,camera phones,or degraded Internet videos displayed
on high-resolution screens. Separating mixed information sources from fewer mea-
surements is yet another super-resolution problem in telecommunication or audio
recognition.

Incoherence, sparsity, and geometry play a crucial role in the solution of ill-
defined inverse problems.With a sensing matrix U with random coefficients,Candès
and Tao [139] and Donoho [217] proved that super-resolution becomes stable for
signals having a sufficiently sparse representation in a dictionary. This remarkable
result opens the door to new compression sensing devices and algorithms that
recover high-resolution signals from a few randomized linear measurements.
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1.5.1 Diagonal Inverse Estimation
In an ill-posed inverse problem,

Y �Uf �W

the image space ImU � {Uh : h∈C
N } of U is of dimension Q smaller than the high-

resolution space N where f belongs. Inverse problems include two difficulties.
In the image space ImU, where U is invertible, its inverse may amplify the noise
W , which then needs to be reduced by an efficient denoising procedure. In the
null space NullU, all signals h are set to zero Uh�0 and thus disappear in the
measured data Y . Recovering the projection of f in NullU requires using some
strong prior information. A super-resolution estimator recovers an estimation of f
in a dimension space larger than Q and hopefully equal to N , but this is not always
possible.

Singular Value Decompositions
Let f �

∑
m∈� a[m] gm be the representation of f in an orthonormal basis B�

{gm}m∈�. An approximation must be recovered from

Y �
∑
m∈�

a[m] Ugm �W .

A basis B of singular vectors diagonalizes U ∗U. Then U transforms a subset of Q
vectors {gm}m∈�Q of B into an orthogonal basis {Ugm}m∈�Q of ImU and sets all
other vectors to zero. A singular value decomposition estimates the coefficients
a[m] of f by projecting Y on this singular basis and by renormalizing the resulting
coefficients

�m∈�, ã[m]�
〈Y , Ugm〉

‖Ugm‖2 �h2
m

,

where h2
m are regularization parameters.

Such estimators recover nonzero coefficients in a space of dimension Q and
thus bring no super-resolution. If U is a convolution operator, then B is the
Fourier basis and a singular value estimation implements a regularized inverse
convolution.

Diagonal Thresholding Estimation
The basis that diagonalizes U ∗U rarely provides a sparse signal representation. For
example,a Fourier basis that diagonalizes convolution operators does not efficiently
approximate signals including singularities.

Donoho [214] introduced more flexibility by looking for a basis B providing a
sparse signal representation,where a subset of Q vectors {gm}m∈�Q are transformed
by U in a Riesz basis {Ugm}m∈�Q of ImU, while the others are set to zero. With

an appropriate renormalization,{�̃�1
m Ugm}m∈�Q has a biorthogonal basis {�̃m}m∈�Q
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that is normalized ‖�̃m‖�1.The sparse coefficients of f in B can then be estimated
with a thresholding

�m∈�Q, ã[m]�
Tm(�̃�1
m 〈Y, �̃m〉) with 
T (x)�x 1|x|
T ,

for thresholds Tm appropriately defined.
For classes of signals that are sparse in B, such thresholding estimators may

yield a nearly minimax risk, but they provide no super-resolution since this non-
linear projector remains in a space of dimension Q. This result applies to classes
of convolution operators U in wavelet or wavelet packet bases. Diagonal inverse
estimators are computationally efficient and potentially optimal in cases where
super-resolution is not possible.

1.5.2 Super-resolution and Compressive Sensing
Suppose that f has a sparse representation in some dictionary D� {gp}p∈� of
P normalized vectors. The P vectors of the transformed dictionary DU �UD�
{Ugp}p∈� belong to the space ImU of dimension Q�P and thus define a redundant
dictionary. Vectors in the approximation support 
 of f are not restricted a priori
to a particular subspace of C

N . Super-resolution is possible if the approximation
support 
 of f in D can be estimated by decomposing the noisy data Y over DU .
It depends on the properties of the approximation support 
 of f in �.

Geometric Conditions for Super-resolution
Let w
 � f � f
 be the approximation error of a sparse representation f
 �∑

p∈
 a[ p] gp of f . The observed signal can be written as

Y �Uf �W �
∑
p∈


a[ p] Ugp �Uw
 �W .

If the support 
 can be identified by finding a sparse approximation of Y in DU

Y
 �
∑
p∈


ã[ p] Ugp,

then we can recover a super-resolution estimation of f

F̃ �
∑
p∈


ã[ p] gp.

This shows that super-resolution is possible if the approximation support 
 can be
identified by decomposing Y in the redundant transformed dictionary DU . If the
exact recovery criteria is satisfy ERC(
)�1 and if {Ugp}p∈
 is a Riesz basis, then 

can be recovered using pursuit algorithms with controlled error bounds.

For most operator U, not all sparse approximation sets can be recovered. It is
necessary to impose some further geometric conditions on 
 in �, which makes
super-resolution difficult and often unstable. Numerical applications to sparse spike
deconvolution, tomography, super-resolution zooming, and inpainting illustrate
these results.
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Compressive Sensing with Randomness
Candès and Tao [139], and Donoho [217] proved that stable super-resolution
is possible for any sufficiently sparse signal f if U is an operator with random
coefficients. Compressive sensing then becomes possible by recovering a close
approximation of f ∈C

N from Q�N linear measurements [133].
A recovery is stable for a sparse approximation set |
|�M only if the corre-

sponding dictionary family {Ugm}m∈
 is a Riesz basis of the space it generates.
The M-restricted isometry conditions of Candès,Tao, and Donoho [217] imposes
uniform Riesz bounds for all sets 
⊂� with |
|�M :

�c ∈C
|
|, (1��M ) ‖c‖2 �‖

∑
m∈


c[ p] Ugp‖2 �(1��M ) ‖c‖2. (1.20)

This is a strong incoherence condition on the P vectors of {Ugm}m∈�, which sup-
poses that any subset of less than M vectors is nearly uniformly distributed on the
unit sphere of ImU.

For an orthogonal basis D� {gm}m∈�, this is possible for M �C Q(log N )�1 if
U is a matrix with independent Gaussian random coefficients. A pursuit algorithm
then provides a stable approximation of any f ∈CN having a sparse approximation
from vectors in D.

These results open a new compressive-sensing approach to signal acquisition and
representation. Instead of first discretizing linearly the signal at a high-resolution
N and then computing a nonlinear representation over M coefficients in some
dictionary,compressive-sensing measures directly M randomized linear coefficients.
A reconstructed signal is then recovered by a nonlinear algorithm, producing an
error that can be of the same order of magnitude as the error obtained by the more
classic two-step approximation process,with a more economic acquisiton process.
These results remain valid for several types of random matrices U . Examples of
applications to single-pixel cameras, video super-resolution, new analog-to-digital
converters, and MRI imaging are described.

Blind Source Separation
Sparsity in redundant dictionaries also provides efficient strategies to separate a
family of signals { fs}0�s�S that are linearly mixed in K �S observed signals with
noise:

Yk[n]�

S�1∑
s�0

uk,s fs[n]�Wk[n] for 0�n � N and 0�k�K .

From a stereo recording, separating the sounds of S musical instruments is an
example of source separation with k�2. Most often the mixing matrix U �
{uk,s}0�k�K ,0�s�S is unknown. Source separation is a super-resolution problem
since S N data values must be recovered from Q�K N �S N measurements. Not
knowing the operator U makes it even more complicated.

If each source fs has a sparse approximation support 
s in a dictionary D,with∑S�1
s�0 |
s|�N , then it is likely that the sets {
s}0�s�s are nearly disjoint. In this
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case, the operator U , the supports 
s, and the sources fs are approximated by
computing sparse approximations of the observed data Yk in D. The distribution
of these coefficients identifies the coefficients of the mixing matrix U and the
nearly disjoint source supports.Time-frequency separation of sounds illustrate these
results.

1.6 TRAVEL GUIDE
1.6.1 Reproducible Computational Science
This book covers the whole spectrum from theorems on functions of continuous
variables to fast discrete algorithms and their applications. Section 1.1.2 argues
that models based on continuous time functions give useful asymptotic results for
understanding the behavior of discrete algorithms. Still, a mathematical analysis
alone is often unable to fully predict the behavior and suitability of algorithms
for specific signals. Experiments are necessary and such experiments should be
reproducible, just like experiments in other fields of science [124].

The reproducibility of experiments requires having complete software and full
source code for inspection, modification, and application under varied parame-
ter settings. Following this perspective, computational algorithms presented in
this book are available as MATLAB subroutines or in other software packages.
Figures can be reproduced and the source code is available. Software demonstra-
tions and selected exercise solutions are available at http://wavelet-tour.com. For
the instructor, solutions are available at www.elsevierdirect.com/9780123743701.

1.6.2 Book Road Map
Some redundancy is introduced between sections to avoid imposing a linear pro-
gression through the book. The preface describes several possible programs for a
sparse signal-processing course.

All theorems are explained in the text and reading the proofs is not necessary to
understand the results. Most of the book’s theorems are proved in detail,and impor-
tant techniques are included. Exercises at the end of each chapter give examples of
mathematical, algorithmic, and numeric applications, ordered by level of difficulty
from 1 to 4, and selected solutions can be found at http://wavelet-tour.com.

The book begins with Chapters 2 and 3, which review the Fourier transform
and linear discrete signal processing. They provide the necessary background
for readers with no signal-processing background. Important properties of linear
operators, projectors, and vector spaces can be found in the Appendix. Local time-
frequency transforms and dictionaries are presented in Chapter 4; the wavelet and
windowed Fourier transforms are introduced and compared. The measurement of
instantaneous frequencies illustrates the limitations of time-frequency resolution.
Dictionary stability and redundancy are introduced in Chapter 5 through the frame
theory,with examples of windowed Fourier,wavelet,and curvelet frames. Chapter 6
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explains the relationship between wavelet coefficient amplitude and local signal
regularity. It is applied to the detection of singularities and edges and to the analysis
of multifractals.

Wavelet bases and fast filter bank algorithms are important tools presented in
Chapter 7. An overdose of orthonormal bases can strike the reader while study-
ing the construction and properties of wavelet packets and local cosine bases
in Chapter 8. It is thus important to read Chapter 9, which describes sparse
approximations in bases. Signal-compression and denoising applications described
in Chapters 10 and 11 give life to most theoretical and algorithmic results in the
book. These chapters offer a practical perspective on the relevance of linear and
nonlinear signal-processing algorithms. Chapter 12 introduces sparse decomposi-
tions in redundant dictionaries and their applications. The resolution of inverse
problems is studied in Chapter 13, with super-resolution, compressive sensing, and
source separation.
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