A Wavelet Tour of Signal Processing
A Wavelet Tour of Signal Processing
The Sparse Way

Stéphane Mallat
with contributions from Gabriel Peyré
À la mémoire de mon père, Alexandre.
Pour ma mère, Francine.
Contents

Preface to the Sparse Edition xv
Notations .. xix

CHAPTER 1 Sparse Representations 1
 1.1 Computational Harmonic Analysis 1
 1.1.1 The Fourier Kingdom 2
 1.1.2 Wavelet Bases 2
 1.2 Approximation and Processing in Bases 5
 1.2.1 Sampling with Linear Approximations 7
 1.2.2 Sparse Nonlinear Approximations 8
 1.2.3 Compression 11
 1.2.4 Denoising 11
 1.3 Time-Frequency Dictionaries 14
 1.3.1 Heisenberg Uncertainty 15
 1.3.2 Windowed Fourier Transform 16
 1.3.3 Continuous Wavelet Transform 17
 1.3.4 Time-Frequency Orthonormal Bases 19
 1.4 Sparsity in Redundant Dictionaries 21
 1.4.1 Frame Analysis and Synthesis 21
 1.4.2 Ideal Dictionary Approximations 23
 1.4.3 Pursuit in Dictionaries 24
 1.5 Inverse Problems 26
 1.5.1 Diagonal Inverse Estimation 27
 1.5.2 Super-resolution and Compressive Sensing ... 28
 1.6 Travel Guide 30
 1.6.1 Reproducible Computational Science 30
 1.6.2 Book Road Map 30

CHAPTER 2 The Fourier Kingdom 33
 2.1 Linear Time-Invariant Filtering 33
 2.1.1 Impulse Response 35
 2.1.2 Transfer Functions 35
 2.2 Fourier Integrals 35
 2.2.1 Fourier Transform in $L^1(\mathbb{R})$ 35
 2.2.2 Fourier Transform in $L^2(\mathbb{R})$ 38
 2.2.3 Examples 40
 2.3 Properties ... 42
 2.3.1 Regularity and Decay 42
 2.3.2 Uncertainty Principle 43

Copyright © 2009 by Elsevier Inc. All rights reserved.
2.3.3 Total Variation .. 46
2.4 Two-Dimensional Fourier Transform 51
2.5 Exercises .. 55

CHAPTER 3 Discrete Revolution 59
3.1 Sampling Analog Signals .. 59
 3.1.1 Shannon-Whittaker Sampling Theorem 59
 3.1.2 Aliasing ... 61
 3.1.3 General Sampling and Linear Analog Conversions . . 65
3.2 Discrete Time-Invariant Filters 70
 3.2.1 Impulse Response and Transfer Function 70
 3.2.2 Fourier Series .. 72
3.3 Finite Signals .. 75
 3.3.1 Circular Convolutions 76
 3.3.2 Discrete Fourier Transform 76
 3.3.3 Fast Fourier Transform 78
 3.3.4 Fast Convolutions 79
3.4 Discrete Image Processing 80
 3.4.1 Two-Dimensional Sampling Theorems 80
 3.4.2 Discrete Image Filtering 82
 3.4.3 Circular Convolutions and Fourier Basis 83
3.5 Exercises .. 85

CHAPTER 4 Time Meets Frequency 89
4.1 Time-Frequency Atoms ... 89
4.2 Windowed Fourier Transform 92
 4.2.1 Completeness and Stability 94
 4.2.2 Choice of Window 98
 4.2.3 Discrete Windowed Fourier Transform 101
4.3 Wavelet Transforms ... 102
 4.3.1 Real Wavelets .. 103
 4.3.2 Analytic Wavelets 107
 4.3.3 Discrete Wavelets 112
4.4 Time-Frequency Geometry of Instantaneous Frequencies . 115
 4.4.1 Analytic Instantaneous Frequency 115
 4.4.2 Windowed Fourier Ridges 118
 4.4.3 Wavelet Ridges ... 129
4.5 Quadratic Time-Frequency Energy 134
 4.5.1 Wigner-Ville Distribution 136
 4.5.2 Interferences and Positivity 140
 4.5.3 Cohen's Class .. 145
 4.5.4 Discrete Wigner-Ville Computations 149
4.6 Exercises .. 151

Copyright © 2009 by Elsevier Inc. All rights reserved.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Frames</td>
<td>155</td>
</tr>
<tr>
<td>5.1</td>
<td>Frames and Riesz Bases</td>
<td>155</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Stable Analysis and Synthesis Operators</td>
<td>155</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Dual Frame and Pseudo Inverse</td>
<td>159</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Dual-Frame Analysis and Synthesis Computations</td>
<td>161</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Frame Projector and Reproducing Kernel</td>
<td>166</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Translation-Invariant Frames</td>
<td>168</td>
</tr>
<tr>
<td>5.2</td>
<td>Translation-Invariant Dyadic Wavelet Transform</td>
<td>170</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Dyadic Wavelet Design</td>
<td>172</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Algorithm à Trous</td>
<td>175</td>
</tr>
<tr>
<td>5.3</td>
<td>Subsampled Wavelet Frames</td>
<td>178</td>
</tr>
<tr>
<td>5.4</td>
<td>Windowed Fourier Frames</td>
<td>181</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Tight Frames</td>
<td>183</td>
</tr>
<tr>
<td>5.4.2</td>
<td>General Frames</td>
<td>184</td>
</tr>
<tr>
<td>5.5</td>
<td>Multiscale Directional Frames for Images</td>
<td>188</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Directional Wavelet Frames</td>
<td>189</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Curvelet Frames</td>
<td>194</td>
</tr>
<tr>
<td>5.6</td>
<td>Exercises</td>
<td>201</td>
</tr>
<tr>
<td>6</td>
<td>Wavelet Zoom</td>
<td>205</td>
</tr>
<tr>
<td>6.1</td>
<td>Lipschitz Regularity</td>
<td>205</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Lipschitz Definition and Fourier Analysis</td>
<td>205</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Wavelet Vanishing Moments</td>
<td>208</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Regularity Measurements with Wavelets</td>
<td>211</td>
</tr>
<tr>
<td>6.2</td>
<td>Wavelet Transform Modulus Maxima</td>
<td>218</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Detection of Singularities</td>
<td>218</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Dyadic Maxima Representation</td>
<td>224</td>
</tr>
<tr>
<td>6.3</td>
<td>Multiscale Edge Detection</td>
<td>230</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Wavelet Maxima for Images</td>
<td>230</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Fast Multiscale Edge Computations</td>
<td>239</td>
</tr>
<tr>
<td>6.4</td>
<td>Multifractals</td>
<td>242</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Fractal Sets and Self-Similar Functions</td>
<td>242</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Singularity Spectrum</td>
<td>246</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Fractal Noises</td>
<td>254</td>
</tr>
<tr>
<td>6.5</td>
<td>Exercises</td>
<td>259</td>
</tr>
<tr>
<td>7</td>
<td>Wavelet Bases</td>
<td>263</td>
</tr>
<tr>
<td>7.1</td>
<td>Orthogonal Wavelet Bases</td>
<td>265</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Multiresolution Approximations</td>
<td>264</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Scaling Function</td>
<td>267</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Conjugate Mirror Filters</td>
<td>270</td>
</tr>
<tr>
<td>7.1.4</td>
<td>In Which Orthogonal Wavelets Finally Arrive</td>
<td>278</td>
</tr>
<tr>
<td>7.2</td>
<td>Classes of Wavelet Bases</td>
<td>284</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Choosing a Wavelet</td>
<td>284</td>
</tr>
</tbody>
</table>
7. Wavelets and Filter Banks

7.2.2 Shannon, Meyer, Haar, and Battle-Lemarié Wavelets 289
7.2.3 Daubechies Compactly Supported Wavelets 292

7.3 Wavelets and Filter Banks

7.3.1 Fast Orthogonal Wavelet Transform .. 298
7.3.2 Perfect Reconstruction Filter Banks 302
7.3.3 Biorthogonal Bases of $\ell^2(\mathbb{Z})$ 306

7.4 Biorthogonal Wavelet Bases

7.4.1 Construction of Biorthogonal Wavelet Bases 308
7.4.2 Biorthogonal Wavelet Design .. 311
7.4.3 Compactly Supported Biorthogonal Wavelets 313

7.5 Wavelet Bases on an Interval

7.5.1 Periodic Wavelets ... 317
7.5.2 Folded Wavelets ... 318
7.5.3 Boundary Wavelets ... 320

7.6 Multiscale Interpolations

7.6.1 Interpolation and Sampling Theorems ... 322
7.6.2 Interpolation Wavelet Basis ... 328

7.7 Separable Wavelet Bases

7.7.1 Separable Multiresolutions .. 333
7.7.2 Two-Dimensional Wavelet Bases ... 338
7.7.3 Fast Two-Dimensional Wavelet Transform 340
7.7.4 Wavelet Bases in Higher Dimensions .. 342

7.8 Lifting Wavelets

7.8.1 Biorthogonal Bases over Nonstationary Grids 346
7.8.2 Lifting Scheme ... 348
7.8.3 Quincunx Wavelet Bases ... 350
7.8.4 Wavelets on Bounded Domains and Surfaces 352
7.8.5 Faster Wavelet Transform with Lifting ... 354

7.9 Exercises ... 356

8. Wavelet Packet and Local Cosine Bases

8.1 Wavelet Packets ... 358
8.1.1 Wavelet Packet Tree .. 358
8.1.2 Time-Frequency Localization ... 360
8.1.3 Particular Wavelet Packet Bases .. 362
8.1.4 Wavelet Packet Filter Banks ... 364

8.2 Image Wavelet Packets

8.2.1 Wavelet Packet Quad-Tree .. 366
8.2.2 Separable Filter Banks ... 368

8.3 Block Transforms

8.3.1 Block Bases ... 369
8.3.2 Cosine Bases .. 371
8.3.3 Discrete Cosine Bases ... 373
8.3.4 Fast Discrete Cosine Transforms .. 375
Contents

8.4 Lapped Orthogonal Transforms 410
 8.4.1 Lapped Projectors 410
 8.4.2 Lapped Orthogonal Bases 416
 8.4.3 Local Cosine Bases 419
 8.4.4 Discrete Lapped Transforms 422

8.5 Local Cosine Trees .. 426
 8.5.1 Binary Tree of Cosine Bases 426
 8.5.2 Tree of Discrete Bases 429
 8.5.3 Image Cosine Quad-Tree 429

8.6 Exercises .. 432

CHAPTER 9 Approximations in Bases 435
9.1 Linear Approximations ... 435
 9.1.1 Sampling and Approximation Error 435
 9.1.2 Linear Fourier Approximations 438
 9.1.3 Multiresolution Approximation Errors
 with Wavelets .. 442
 9.1.4 Karhunen-Loève Approximations 446

9.2 Nonlinear Approximations 450
 9.2.1 Nonlinear Approximation Error 451
 9.2.2 Wavelet Adaptive Grids 455
 9.2.3 Approximations in Besov and Bounded
 Variation Spaces 459

9.3 Sparse Image Representations 465
 9.3.1 Wavelet Image Approximations 464
 9.3.2 Geometric Image Models and Adaptive
 Triangulations .. 471
 9.3.3 Curvelet Approximations 476

9.4 Exercises .. 478

CHAPTER 10 Compression 481
10.1 Transform Coding ... 481
 10.1.1 Compression State of the Art 482
 10.1.2 Compression in Orthonormal Bases 483

10.2 Distortion Rate of Quantization 485
 10.2.1 Entropy Coding .. 485
 10.2.2 Scalar Quantization 493

10.3 High Bit Rate Compression 496
 10.3.1 Bit Allocation ... 496
 10.3.2 Optimal Basis and Karhunen-Loève 498
 10.3.3 Transparent Audio Code 501

10.4 Sparse Signal Compression 506
 10.4.1 Distortion Rate and Wavelet Image Coding 506
 10.4.2 Embedded Transform Coding 516

Copyright © 2009 by Elsevier Inc. All rights reserved.
Contents

10.5 Image-Compression Standards
- 10.5.1 JPEG Block Cosine Coding
- 10.5.2 JPEG-2000 Wavelet Coding

10.6 Exercises

CHAPTER 11 Denoising

11.1 Estimation with Additive Noise
- 11.1.1 Bayes Estimation
- 11.1.2 Minimax Estimation

11.2 Diagonal Estimation in a Basis
- 11.2.1 Diagonal Estimation with Oracles
- 11.2.2 Thresholding Estimation
- 11.2.3 Thresholding Improvements

11.3 Thresholding Sparse Representations
- 11.3.1 Wavelet Thresholding
- 11.3.2 Wavelet and Curvelet Image Denoising
- 11.3.3 Audio Denoising by Time-Frequency Thresholding

11.4 Nondiagonal Block Thresholding
- 11.4.1 Block Thresholding in Bases and Frames
- 11.4.2 Wavelet Block Thresholding
- 11.4.3 Time-Frequency Audio Block Thresholding

11.5 Denoising Minimax Optimality
- 11.5.1 Linear Diagonal Minimax Estimation
- 11.5.2 Thresholding Optimality over Orthosymmetric Sets
- 11.5.3 Nearly Minimax with Wavelet Estimation

11.6 Exercises

CHAPTER 12 Sparsity in Redundant Dictionaries

12.1 Ideal Sparse Processing in Dictionaries
- 12.1.1 Best M-Term Approximations
- 12.1.2 Compression by Support Coding
- 12.1.3 Denoising by Support Selection in a Dictionary

12.2 Dictionaries of Orthonormal Bases
- 12.2.1 Approximation, Compression, and Denoising in a Best Basis
- 12.2.2 Fast Best-Basis Search in Tree Dictionaries
- 12.2.3 Wavelet Packet and Local Cosine Best Bases
- 12.2.4 Bandlets for Geometric Image Regularity

12.3 Greedy Matching Pursuits
- 12.3.1 Matching Pursuit
- 12.3.2 Orthogonal Matching Pursuit
- 12.3.3 Gabor Dictionaries
- 12.3.4 Coherent Matching Pursuit Denoising

Copyright © 2009 by Elsevier Inc. All rights reserved.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4</td>
<td>(l^1) Pursuits</td>
<td>659</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Basis Pursuit</td>
<td>659</td>
</tr>
<tr>
<td>12.4.2</td>
<td>(l^1) Lagrangian Pursuit</td>
<td>664</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Computations of (l^1) Minimizations</td>
<td>668</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Sparse Synthesis versus Analysis and Total Variation Regularization</td>
<td>673</td>
</tr>
<tr>
<td>12.5</td>
<td>Pursuit Recovery</td>
<td>677</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Stability and Incoherence</td>
<td>677</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Support Recovery with Matching Pursuit</td>
<td>679</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Support Recovery with (l^1) Pursuits</td>
<td>684</td>
</tr>
<tr>
<td>12.6</td>
<td>Multichannel Signals</td>
<td>688</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Approximation and Denoising by Thresholding in Bases</td>
<td>689</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Multichannel Pursuits</td>
<td>690</td>
</tr>
<tr>
<td>12.7</td>
<td>Learning Dictionaries</td>
<td>695</td>
</tr>
<tr>
<td>12.8</td>
<td>Exercises</td>
<td>696</td>
</tr>
</tbody>
</table>

CHAPTER 13 Inverse Problems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Linear Inverse Estimation</td>
<td>700</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Quadratic and Tikhonov Regularizations</td>
<td>700</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Singular Value Decompositions</td>
<td>702</td>
</tr>
<tr>
<td>13.2</td>
<td>Thresholding Estimators for Inverse Problems</td>
<td>703</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Thresholding in Bases of Almost Singular Vectors</td>
<td>703</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Thresholding Deconvolutions</td>
<td>709</td>
</tr>
<tr>
<td>13.3</td>
<td>Super-resolution</td>
<td>713</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Sparse Super-resolution Estimation</td>
<td>713</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Sparse Spike Deconvolution</td>
<td>719</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Recovery of Missing Data</td>
<td>722</td>
</tr>
<tr>
<td>13.4</td>
<td>Compressive Sensing</td>
<td>728</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Incoherence with Random Measurements</td>
<td>729</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Approximations with Compressive Sensing</td>
<td>735</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Compressive Sensing Applications</td>
<td>742</td>
</tr>
<tr>
<td>13.5</td>
<td>Blind Source Separation</td>
<td>744</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Blind Mixing Matrix Estimation</td>
<td>745</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Source Separation</td>
<td>751</td>
</tr>
<tr>
<td>13.6</td>
<td>Exercises</td>
<td>752</td>
</tr>
</tbody>
</table>

APPENDIX Mathematical Complements

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

Bibliography

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

Index

Copyright © 2009 by Elsevier Inc. All rights reserved.
Preface to the Sparse Edition

I cannot help but find striking resemblances between scientific communities and schools of fish. We interact in conferences and through articles, and we move together while a global trajectory emerges from individual contributions. Some of us like to be at the center of the school, others prefer to wander around, and a few swim in multiple directions in front. To avoid dying by starvation in a progressively narrower and specialized domain, a scientific community needs also to move on. Computational harmonic analysis is still very much alive because it went beyond wavelets. Writing such a book is about decoding the trajectory of the school and gathering the pearls that have been uncovered on the way. Wavelets are no longer the central topic, despite the previous edition’s original title. It is just an important tool, as the Fourier transform is. Sparse representation and processing are now at the core.

In the 1980s, many researchers were focused on building time-frequency decompositions, trying to avoid the uncertainty barrier, and hoping to discover the ultimate representation. Along the way came the construction of wavelet orthogonal bases, which opened new perspectives through collaborations with physicists and mathematicians. Designing orthogonal bases with Xlets became a popular sport with compression and noise-reduction applications. Connections with approximations and sparsity also became more apparent. The search for sparsity has taken over, leading to new grounds where orthonormal bases are replaced by redundant dictionaries of waveforms.

During these last seven years, I also encountered the industrial world. With a lot of naiveness, some bandlets, and more mathematics, I cofounded a start-up with Christophe Bernard, Jérome Kalifa, and Erwan Le Pennec. It took us some time to learn that in three months good engineering should produce robust algorithms that operate in real time, as opposed to the three years we were used to having for writing new ideas with promising perspectives. Yet, we survived because mathematics is a major source of industrial innovations for signal processing. Semiconductor technology offers amazing computational power and flexibility. However, ad hoc algorithms often do not scale easily and mathematics accelerates the trial-and-error development process. Sparsity decreases computations, memory, and data communications. Although it brings beauty, mathematical understanding is not a luxury. It is required by increasingly sophisticated information-processing devices.

New Additions

Putting sparsity at the center of the book implied rewriting many parts and adding sections. Chapters 12 and 13 are new. They introduce sparse representations in redundant dictionaries, and inverse problems, super-resolution, and...
compressive sensing. Here is a small catalog of new elements in this third edition:

- Radon transform and tomography
- Lifting for wavelets on surfaces, bounded domains, and fast computations
- JPEG-2000 image compression
- Block thresholding for denoising
- Geometric representations with adaptive triangulations, curvelets, and bandlets
- Sparse approximations in redundant dictionaries with pursuit algorithms
- Noise reduction with model selection in redundant dictionaries
- Exact recovery of sparse approximation supports in dictionaries
- Multichannel signal representations and processing
- Dictionary learning
- Inverse problems and super-resolution
- Compressive sensing
- Source separation

Teaching

This book is intended as a graduate-level textbook. Its evolution is also the result of teaching courses in electrical engineering and applied mathematics. A new website provides software for reproducible experimentations, exercise solutions, together with teaching material such as slides with figures and MATLAB software for numerical classes of \(http://wavelet-tour.com \).

More exercises have been added at the end of each chapter, ordered by level of difficulty. Level 1 exercises are direct applications of the course. Level 2 exercises require more thinking. Level 3 includes some technical derivation exercises. Level 4 are projects at the interface of research that are possible topics for a final course project or independent study. More exercises and projects can be found in the website.

Sparse Course Programs

The Fourier transform and analog-to-digital conversion through linear sampling approximations provide a common ground for all courses (Chapters 2 and 3). It introduces basic signal representations and reviews important mathematical and algorithmic tools needed afterward. Many trajectories are then possible to explore and teach sparse signal processing. The following list notes several topics that can orient a course’s structure with elements that can be covered along the way.
Sparse representations with bases and applications:
- Principles of linear and nonlinear approximations in bases (Chapter 9)
- Lipschitz regularity and wavelet coefficients decay (Chapter 6)
- Wavelet bases (Chapter 7)
- Properties of linear and nonlinear wavelet basis approximations (Chapter 9)
- Image wavelet compression (Chapter 10)
- Linear and nonlinear diagonal denoising (Chapter 11)

Sparse time-frequency representations:
- Time-frequency wavelet and windowed Fourier ridges for audio processing (Chapter 4)
- Local cosine bases (Chapter 8)
- Linear and nonlinear approximations in bases (Chapter 9)
- Audio compression (Chapter 10)
- Audio denoising and block thresholding (Chapter 11)
- Compression and denoising in redundant time-frequency dictionaries with best bases or pursuit algorithms (Chapter 12)

Sparse signal estimation:
- Bayes versus minimax and linear versus nonlinear estimations (Chapter 11)
- Wavelet bases (Chapter 7)
- Linear and nonlinear approximations in bases (Chapter 9)
- Thresholding estimation (Chapter 11)
- Minimax optimality (Chapter 11)
- Model selection for denoising in redundant dictionaries (Chapter 12)
- Compressive sensing (Chapter 13)

Sparse compression and information theory:
- Wavelet orthonormal bases (Chapter 7)
- Linear and nonlinear approximations in bases (Chapter 9)
- Compression and sparse transform codes in bases (Chapter 10)
- Compression in redundant dictionaries (Chapter 12)
- Compressive sensing (Chapter 13)
- Source separation (Chapter 13)

Dictionary representations and inverse problems:
- Frames and Riesz bases (Chapter 5)
- Linear and nonlinear approximations in bases (Chapter 9)
- Ideal redundant dictionary approximations (Chapter 12)
- Pursuit algorithms and dictionary incoherence (Chapter 12)
- Linear and thresholding inverse estimators (Chapter 13)
- Super-resolution and source separation (Chapter 13)
- Compressive sensing (Chapter 13)
Preface to the Sparse Edition

Geometric sparse processing:

- Time-frequency spectral lines and ridges (Chapter 4)
- Frames and Riesz bases (Chapter 5)
- Multiscale edge representations with wavelet maxima (Chapter 6)
- Sparse approximation supports in bases (Chapter 9)
- Approximations with geometric regularity, curvelets, and bandlets (Chapters 9 and 12)
- Sparse signal compression and geometric bit budget (Chapters 10 and 12)
- Exact recovery of sparse approximation supports (Chapter 12)
- Super-resolution (Chapter 13)

ACKNOWLEDGMENTS

Some things do not change with new editions, in particular the traces left by the ones who were, and remain, for me important references. As always, I am deeply grateful to Ruzena Bajcsy and Yves Meyer.

I spent the last few years with three brilliant and kind colleagues—Christophe Bernard, Jérôme Kalifa, and Erwan Le Pennec—in a pressure cooker called a “start-up.” Pressure means stress, despite very good moments. The resulting sauce was a blend of what all of us could provide, which brought new flavors to our personalities. I am thankful to them for the ones I got, some of which I am still discovering.

This new edition is the result of a collaboration with Gabriel Peyré, who made these changes not only possible, but also very interesting to do. I thank him for his remarkable work and help.

Stéphane Mallat
Notations

\[\langle f, g \rangle\] Inner product (A.6)
\[\|f\|\] Euclidean or Hilbert space norm
\[\|f\|_1\] \(L^1\) or \(L^1\) norm
\[\|f\|_\infty\] \(L^\infty\) norm
\[f[n] = O(g[n])\] Order of: there exists \(K\) such that \(f[n] \leq K g[n]\)
\[f[n] \sim o(g[n])\] Small order of: \(\lim_{n \to +\infty} \frac{f[n]}{g[n]} = 0\)
\[f[n] \sim g[n]\] Equivalent to: \(f[n] = O(g[n])\) and \(g[n] = O(f[n])\)
\(A < +\infty\) \(A\) is finite
\(A \gg B\) \(A\) is much bigger than \(B\)
\(z^*\) Complex conjugate of \(z \in \mathbb{C}\)
\([x]\) Largest integer \(n \leq x\)
\([x]\) Smallest integer \(n \geq x\)
\((x)_+\) \(\max(x, 0)\)
\(n \mod N\) Remainder of the integer division of \(n\) modulo \(N\)

Sets
\(\mathbb{N}\) Positive integers including 0
\(\mathbb{Z}\) Integers
\(\mathbb{R}\) Real numbers
\(\mathbb{R}^+\) Positive real numbers
\(\mathbb{C}\) Complex numbers
\(|\Lambda|\) Number of elements in a set \(\Lambda\)

Signals
\(f(t)\) Continuous time signal
\(f[n]\) Discrete signal
\(\delta(t)\) Dirac distribution (A.30)
\(\delta[n]\) Discrete Dirac (3.32)
\(1_{[a,b]}\) Indicator of a function that is 1 in \([a, b]\) and 0 outside

Spaces
\(C_0\) Uniformly continuous functions (7.207)
\(C^p\) \(p\) times continuously differentiable functions
\(C^\infty\) Infinitely differentiable functions
\(W^s(\mathbb{R})\) Sobolev \(s\) times differentiable functions (9.8)
\(L^2(\mathbb{R})\) Finite energy functions \(\int |f(t)|^2 \, dt < +\infty\)
\(L^p(\mathbb{R})\) Functions such that \(\int |f(t)|^p \, dt < +\infty\)
\(\ell^2(\mathbb{Z})\) Finite energy discrete signals \(\sum_{n=-\infty}^{+\infty} |f[n]|^2 < +\infty\)
\(\ell^p(\mathbb{Z})\) Discrete signals such that \(\sum_{n=-\infty}^{+\infty} |f[n]|^p < +\infty\)
\(\mathbb{C}^N\) Complex signals of size \(N\)
\(U \oplus V\) Direct sum of two vector spaces
Notations

\(U \otimes V \) Tensor product of two vector spaces (A.19)
\(\text{Null} U \) Null space of an operator \(U \)
\(\text{Im} U \) Image space of an operator \(U \)

Operators
\(\text{Id} \) Identity
\(f'(t) \) Derivative \(\frac{df(t)}{dt} \)
\(f^{(p)}(t) \) Derivative \(\frac{d^p f(t)}{dt^p} \) of order \(p \)
\(\nabla f(x, y) \) Gradient vector (6.51)
\(f \ast g(t) \) Continuous time convolution (2.2)
\(f \star g[n] \) Discrete convolution (3.33)
\(f \circ \star g[n] \) Circular convolution (3.73)

Transforms
\(\hat{f}(\omega) \) Fourier transform (2.6), (3.39)
\(\hat{f}[k] \) Discrete Fourier transform (3.49)
\(Sf(u, s) \) Short-time windowed Fourier transform (4.11)
\(Psf(u, \xi) \) Spectrogram (4.12)
\(Wf(u, s) \) Wavelet transform (4.31)
\(P_{WF}(u, \xi) \) Scalogram (4.55)
\(P_{WV}(u, \xi) \) Wigner-Ville distribution (4.120)

Probability
\(X \) Random variable
\(E\{X\} \) Expected value
\(\mathcal{H}(X) \) Entropy (10.4)
\(\mathcal{H}_d(X) \) Differential entropy (10.20)
\(\text{Cov}(X_1, X_2) \) Covariance (A.22)
\(F[n] \) Random vector
\(R_F[k] \) Autocovariance of a stationary process (A.26)
A Wavelet Tour of Signal Processing